DATA STRUCTURE AND ALGORITHMS
UNIT-2

Sorting:

Sorting refers to the operation or technique of arranging and rearranging sets of data in some
specific order. A collection of records called a list where every record has one or more fields.
The fields which contain a unique value for each record is termed as the key field.

Sorting is the operation performed to arrange the records of a table or list in some order
according to some specific ordering criterion. Sorting is performed according to some key value
of each record.

For example, a phone number directory can be thought of as a list where each record has three
fields - 'name’ of the person, 'address' of that person, and their 'phone numbers'. Being unique
phone number can work as a key to locate any record in the list.

The complexity of sorting algorithm:

The complexity of sorting algorithm calculates the running time of a function in which 'n'
number of items are to be sorted. The choice for which sorting method is suitable for a problem
depends on several dependency configurations for different problems. The most noteworthy of
these considerations are:

e The length of time spent by the programmer in programming a specific sorting program
e Amount of machine time necessary for running the program
e The amount of memory necessary for running the program

The Efficiency of sorting algorithm:

To get the amount of time required to sort an array of 'n' elements by a particular method, the
normal approach is to analyze the method to find the number of comparisons (or exchanges)
required by it. Most of the sorting techniques are data sensitive, and so the metrics for them
depends on the order in which they appear in an input array.

Various sorting techniques are analyzed in various cases and named these cases as follows:

e Best case
e \Worst case
e Average case

Categories of Sorting:

The techniques of sorting can be divided into two categories. These are:

e Internal Sorting
e External Sorting

Internal Sorting: If all the data that is to be sorted can be adjusted at a time in the main
memory, the internal sorting method is being performed.

External Sorting: When the data that is to be sorted cannot be accommodated in the memory
at the same time and some has to be kept in auxiliary memory such as hard disk, floppy disk,
magnetic tapes etc., then external sorting methods are performed.

Types of sorting techniques:

1. Bubble Sort

Bubble Sort is a comparison-based sorting algorithm. In this algorithm adjacent elements are
compared and swapped to make the correct sequence. This algorithm is simpler than other
algorithms, but it has some drawbacks also. This algorithm is not suitable for a large number of
data set. It takes much time to solve the sorting tasks.

The complexity of the Bubble Sort Technique

¢ Time Complexity: O(n) for best case, O(n”2) for average and worst case

e Space Complexity: O(1)

Below given figure shows how Bubble Sort works:

List is unsorted. We are going to sort this in ASCENDING order using Bubble Sort

s [« 1 s | = | =]

First Pass of the first For loop.

1=0, aljl=5, ali+1] =4 (Second For loop starts working)

s [e 1 = | = | =]

Here a[j]=5 and a[j+1]=4 are compared. Their positions are then interchanged.

Second For loop gets iterated. Now j=1 a[j]1=5 and a[j+1]=3

- 1 s 1 = | = | = |

j=2 aljl=5 and a[j+=1]=2

L+ 1 = [s [= [=+ |
7=3 alij]=5 and a[j+1]=1
.+« 1 s 1 = [s [=+ |

Largest element of the list is mowved to last position after first pass.

- [= | = | = | = |

Algorithm for Bubble Sort

1. Bubble_Sort(list)

2. Pre:list I=Hfi

3. Post: list is sorted in ascending order for all values
4. fori<-0tolist:Count-1
5. forj<-0tolist:Count-1
6. if list[i] < list[j]

7. Swap(list[i]; list[j])

8. endif

9. end for

10. end for

11. return list

12. end Bubble_Sort

2. Selection Sort:

In the selection sort technique, the list is divided into two parts. In one part all elements are
sorted and in another part the items are unsorted. At first, we take the maximum or minimum
data from the array. After getting the data (say minimum) we place it at the beginning of the
list by replacing the data of first place with the minimum data. After performing the array is
getting smaller. Thus, this sorting technique is done.

The complexity of Selection Sort Technique:

e Time Complexity: O(n”*2)
e Space Complexity: O(1)

The below-given figure shows how Selection Sort works:

3 =) 6 1 2
t L)

1 9 6 3 2

1 ¥

1 2 6 3)
r 7

1 2 3 6)

1 2 3 6)

Fig. Selection Sort Technigue

Algorithm:

Begin

fori:=0to size-2 do

for j:=i+1 tosize—1do

if array[j] < array[iMin] then
iMin :=j

Done

swap array[i] with array[iMin].
Done

End

LN~ WNE

3. Insertion Sort

This sorting technique is similar with the card sorting technique, in other words, we sort cards
using insertion sort mechanism. For this technique, we pick up one element from the data set
and shift the data elements to make a place to insert back the picked up an element into the data
set.

Bl [l 2= B [wls]7]
EEIE s = = sl
A4

[1[23]10] 5[2]|=>[1]10]23]5]2]
X/

e RESEOEE I BN BN
__ A

oo NES I I NN EI R
A 4

The complexity of the Insertion Sort Technique
e Time Complexity: O(n) for best case, O(n”"2) for average and worst case

e Space Complexity: O(1)

Algorithm

1. Begin

2. fori:=1tosize-1do
3. key :=arrayl[i]

4. j:=1

5. while j>0 AND array[j-1] > key do
6. array[j] := array[j-1];
7. j:=j—-1

8. Done

9. arrayl[j] := key

10. Done

11. End

4. Merge Sort:

The merge sort technique is based on divide and conquers technique. We divide the whole
dataset into smaller parts and merge them into a larger piece in sorted order. It is also very
effective for worst cases because this algorithm has lower time complexity for the worst case
also.

The complexity of Merge Sort Technique:

o Time Complexity: O(n log n) for all cases
e Space Complexity: O(n)
S I I I IS N B S I

Algorithm:
Begin
nLeft := m - left+1
nRight := right —m
define arrays leftArr and rightArr of size nLeft and nRight respectively

fori:=0to nLeft do
leftArr[i] := array[left +1]
done

for j := 0 to nRight do
rightArr[j] := array[middle +j +1]
done

i:=0,j:=0, k:=left
while i < nLeft AND j < nRight do
if leftArr[i] <= rightArr[j] then
array[k] = leftArr[i]
=i+l
else
array[k] = rightArr[j]
ji=j+l
k:=k+1
done

while i < nLeft do
array[k] := leftArr[i]
=i+l
k:=k+1

done

while j < nRight do
array[k] := rightArr[j]
ji=j+l
k:=k+1
done
End

5.Quick Sort

The quicksort technique is done by separating the list into two parts. Initially, a pivot element is
chosen by partitioning algorithm. The left part of the pivot holds the smaller values than the
pivot, and right part holds the larger value. After partitioning, each separate lists are partitioned
using the same procedure.

QuickSort
Partitioning & Merging

P EER

The complexity of Quicksort Technique
o Time Complexity: O(n log n) for best case and average case, O(n”2) for the worst case.

e Space Complexity: O(log n)

Algorithm:
Begin
pivot := array[lower]
start := lower and end := upper
while start < end do
while array[start] <= pivot AND start < end do
start :=start +1
done

while array[end] > pivot do
end:=end—-1
done
if start < end then
swap array[start] with array[end]
done

array[lower] := array[end]
array[end] := pivot
return end

End

6. Radix Sort

Radix sort is a non-comparative sorting algorithm. This sorting algorithm works on the integer
keys by grouping digits which share the same position and value. The radix is the base of a
number system. As we know that in the decimal system the radix or base is 10. So for sorting
some decimal numbers, we need 10 positional boxes to store numbers.

The complexity of Radix Sort Technique
o Time Complexity: O(nk)
e Space Complexity: O(n+k)

Algorithm
Begin
define 10 lists as pocket
fori:=0tomax-1do
m = 107i+1
p := 107
forj:=0ton-1do

temp := array[j] mod m

index :=temp / p

pocket[index]. append(arraylj])
done

count:=0
for j :=0to radix do
while pocket[j] is not empty

array[count] := get first node of pocket[j] and delete it
count :=count +1

done

done
End

Let's Say The Given Array Is This :-

[326 453 |608 |835 | 751 | 435 704

690]

First, Consider The One's Place :-

[326_ 453 |608 |835 | 751 {435 704 | 690]
Now Sort the above array on the basis of digits on one's place
[690 |751 [453 |704 |835 [435 |326 |608]

L

Observe That 835 has before 90 this is

because it appeared before in the

original array.

Now Consider the 10's Place :-

[sgo 751 | 453 |704 |835 |435 |326

608]

Now Sort the above array on the basis of digits on 10

's place

[704 608 |326 | 835 |435 | 751 |453

690]

Now Consider the 100's Place :

[204 608 |326 |835 |435 | 751 |453

690]

Now Sort the above array on the basis of digits on 100's place

[326 435 |453 | 608 | 6950 | 704 751

835]

Array Is Now Sorted

ARRAY VS LINKED LIST:

Array

Linked list

An array is a collection of elements of a
similar data type.

A linked list is a collection of objects known as a
node where node consists of two parts, i.e.,
data and address.

Array elements store
memory location.

in a contiguous

Linked list elements can be stored anywhere in
the memory or randomly stored.

Array works with a static memory. Here
static memory means that the memory size
is fixed and cannot be changed at the run
time.

The Linked list works with dynamic memory.
Here, dynamic memory means that the
memory size can be changed at the run time
according to our requirements.

Array elements are independent of each
other.

Linked list elements are dependent on each
other. As each node contains the address of the
next node so to access the next node, we need
to access its previous node.

Array takes more time while performing any
operation like insertion, deletion, etc.

Linked list takes less time while performing any
operation like insertion, deletion, etc.

Accessing any element in an array is faster as
the element in an array can be directly
accessed through the index.

Accessing an element in a linked list is slower as
it starts traversing from the first element of the
linked list.

In the case of an array, memory is allocated
at compile-time.

In the case of a linked list, memory is allocated
at run time.

Memory utilization is inefficient in the array.
For example, if the size of the array is 6, and
array consists of 3 elements only then the
rest of the space will be unused.

Memory utilization is efficient in the case of a
linked list as the memory can be allocated or
deallocated at the run time according to our
requirement.

Linked List:

Linked List can be defined as collection of objects called nodes that are randomly stored in

the memory.

A node contains two fields i.e. data stored at that particular address and the pointer which

contains the address of the next node in the

memory.

The last node of the list contains pointer to the null.

Head data link
C 1]
12 » 20
s

Tail

.

(End of the list)

28

NULL

Uses of Linked List:

e The list is not required to be contiguously present in the memory. The node can reside
anywhere in the memory and linked together to make a list. This achieves optimized
utilization of space.

e list size is limited to the memory size and doesn't need to be declared in advance.

e Empty node cannot be present in the linked list.

e We can store values of primitive types or objects in the singly linked list.

Representation of a Linked list:

Linked list can be represented as the connection of nodes in which each node points to the next
node of the list. The representation of the linked list is shown below -

Houd.

4700 ;
. Tail
Data link

v ¥

—» 8 | d8008%+——» § | 49008 +—» 4 | S000@%T—» 2 | NULL @& <—
A 4700 A 4800 4900 5000 (End of the list)

Node

Till now, we have been using array data structure to organize the group of elements that are to
be stored individually in the memory.

Advantages of Linked list:

e Dynamic data structure - The size of the linked list may vary according to the requirements.
Linked list does not have a fixed size.

¢ Insertion and deletion - Unlike arrays, insertion, and deletion in linked list is easier. Array
elements are stored in the consecutive location, whereas the elements in the linked list are
stored at a random location. To insert or delete an element in an array, we have to shift the
elements for creating the space. Whereas, in linked list, instead of shifting, we just have to
update the address of the pointer of the node.

e Memory efficient - The size of a linked list can grow or shrink according to the requirements,
so memory consumption in linked list is efficient.

¢ Implementation - We can implement both stacks and queues using linked list.

Disadvantages of Linked list:

e Memory usage - In linked list, node occupies more memory than array. Each node of the
linked list occupies two types of variables, i.e., one is a simple variable, and another one is

the pointer variable.

Traversal - Traversal is not easy in the linked list. If we have to access an element in the linked
list, we cannot access it randomly, while in case of array we can randomly access it by index.
For example, if we want to access the 3rd node, then we need to traverse all the nodes before
it. So, the time required to access a particular node is large.

Reverse traversing - Backtracking or reverse traversing is difficult in a linked list. In a doubly-

linked list, it is easier but requires more memory to store the back pointer.

Applications of Linked list:

With the help of a linked list, the polynomials can be represented as well as we can perform
the operations on the polynomial.

A linked list can be used to represent the sparse matrix.

The various operations like student's details, employee's details, or product details can be
implemented using the linked list as the linked list uses the structure data type that can hold
different data types.

Using linked list, we can implement stack, queue, tree, and other various data structures.
The graph is a collection of edges and vertices, and the graph can be represented as an
adjacency matrix and adjacency list. If we want to represent the graph as an adjacency matrix,
then it can be implemented as an array. If we want to represent the graph as an adjacency
list, then it can be implemented as a linked list.

A linked list can be used to implement dynamic memory allocation. The dynamic memory

allocation is the memory allocation done at the run-time.

Operations performed on Linked list:
The basic operations that are supported by a list are mentioned as follows -

Insertion - This operation is performed to add an element into the list.
Deletion - It is performed to delete an operation from the list.
Display - It is performed to display the elements of the list.

Search - It is performed to search an element from the list using the given key.

Complexity of Linked list:
Now, let's see the time and space complexity of the linked list for the operations search, insert,
and delete.

1. Time Complexity

Operations Average case time Worst-case time

complexity complexity

Insertion 0(1) 0(1)
Deletion 0(1) 0(1)

Search O(n) O(n)

Where 'n' is the number of nodes in the given tree.

2. Space Complexity

Operations Space complexity
Insertion O(n)
Deletion O(n)
Search O(n)

Types of linked List:

Singly Linked list

Doubly Linked list
Circular Linked list
Doubly Circular Linked list

P wnNe

1. Single Linked List:

the singly linked list consists of two parts: data part and link part. Data part of the node stores
actual information that is to be represented by the node, while the link part of the node stores

the address of its immediate successor.
2. Doubly linked list:

Doubly linked list is a complex type of linked list in which a node contains a pointer to the previous
as well as the next node in the sequence. Therefore, in a doubly-linked list, a node consists of
three parts: node data, pointer to the next node in sequence (next pointer), and pointer to the

previous node (previous pointer).
3. Circular singly linked list:

In a circular singly linked list, the last node of the list contains a pointer to the first node of the

list. We can have circular singly linked list as well as circular doubly linked list.

4. Circular doubly linked list:

Circular doubly linked list is a more complex type of data structure in which a node contains
pointers to its previous node as well as the next node. Circular doubly linked list doesn't contain
NULL in any of the nodes. The last node of the list contains the address of the first node of the

list. The first node of the list also contains the address of the last node in its previous pointer.

Node Creation:
struct node

{
int data;
struct node *next;
12
struct node *head, *ptr;

ptr = (struct node *) malloc(sizeof(struct node *));
Operations on Single Linked List:

1. Insertion

The insertion into a singly linked list can be performed at different-positions. Based on the
position of the new node being inserted, the insertion is categorized into the following
categories.

1. Insertion at beginning: It involves inserting any element at the front of the list. We just need
to a few link adjustments to make the new node as the head of the list.

2. Insertion at end of the list: It involves insertion at the last of the linked list. The new node
can be inserted as the only node in the list or it can be inserted as the last one. Different logics
are implemented in each scenario.

3. Insertion after specified node: It involves insertion after the specified node of the linked list.
We need to skip the desired number of nodes in order to reach the node after which the new
node will be inserted. .

Insertion is a three-step process —
e Create a new Link with provided data.

e Point New Link to old First Link.
e Point First Link to this New Link.

node node node

head Next /‘ Next | — l%

———Null

Before Insertion

node
Next / Next / I%T

g
Q.

——Null

node

\ _Next /

Afterinsertion

//insert link at the first location
void insertFirst(int key, int data){
//create a link
struct node *link = (struct node*) malloc(sizeof(struct node));
link->key = key;
link->data = data;

//point it to old first node
link->next = head;

//point first to new first node
head = link;
}

2. Deletion:

The Deletion of a node from a singly linked list can be performed at different positions. Based
on the position of the node being deleted, the operation is categorized into the following
categories.

1. Deletion at beginning: It involves deletion of a node from the beginning of the list. This is the
simplest operation among all. It just needs a few adjustments in the node pointers.

2. Deletion at the end of the list: It involves deleting the last node of the list. The list can either
be empty or full. Different logic is implemented for the different scenarios.

3. Deletion after specified node: It involves deleting the node after the specified node in the
list. we need to skip the desired number of nodes to reach the node after which the node will
be deleted.

Deletion is a two-step process -

e Get the Link pointed by First Link as Temp Link.
e Point First Link to Temp Link's Next Link.

node node node
ﬁl/ Next | — | Next [—] ﬁ— .
Before Deletion
node node

First Next Next
:]/ :// C) nw

After Deletion

//delete first item

struct node* deleteFirst(){
//save reference to first link
struct node *templLink = head;

//mark next to first link as first
head = head->next;

//return the deleted link
return templLink;

}
3. Traversing

Traversing is the most common operation that is performed in almost every scenario of singly
linked list. Traversing means visiting each node of the list once in order to perform some
operation on that. This will be done by using the following statements.

ptr = head;
while (ptr!=NULL)
{
ptr = ptr -> next;

}
Algorithm:
STEP 1: SET PTR = HEAD
STEP 2: IF PTR = NULL

STEP 3: WRITE "EMPTY LIST"
GOTO STEP 7
END OF IF

STEP 4: REPEAT STEP 5 AND 6 UNTIL PTR != NULL
STEP 5: PRINT PTR-> DATA

STEP 6: PTR = PTR - NEXT

[END OF LOOP]

STEP 7: EXIT

4. Searching

Searching is performed in order to find the location of a particular element in the list. Searching
any element in the list needs traversing through the list and make the comparison of every
element of the list with the specified element. If the element is matched with any of the list

element, then the location of the element is returned from the function.

Algorithm:

e Step 1: SET PTR = HEAD
o Step2:Setl=0

e STEP 3: IF PTR=NULL

e WRITE "EMPTY
GOTO STEP
END OF IF

e STEP 4: REPEAT STEP 5 TO 7 UNTIL PTR != NULL
e STEP 5: if ptr - data = item

° write
End of IF

e STEPG6:I=1+1
e STEP 7: PTR = PTR - NEXT

e [END OF LOOP]

e STEP 8: EXIT

LIsT"
8

i+1

	The complexity of the Bubble Sort Technique
	Algorithm for Bubble Sort

	The complexity of the Insertion Sort Technique
	Algorithm
	The complexity of Merge Sort Technique:
	Algorithm:
	The complexity of Quicksort Technique
	Algorithm:
	The complexity of Radix Sort Technique
	Algorithm
	Linked List:
	Uses of Linked List:
	Representation of a Linked list:
	Advantages of Linked list:
	Disadvantages of Linked list:
	Applications of Linked list:
	Operations performed on Linked list:
	Complexity of Linked list:
	1. Time Complexity
	2. Space Complexity
	Node Creation:

	Algorithm:

